Search among the 162067 resources available in the repository
Los propósitos de este trabajo fueron comparar los valores de la energía de activación (Ea) de Arrhenius, que representa la dependencia del coeficiente de difusión con la temperatura durante el secado de geles pécticos de tomates, determinados por dos métodos: (1) correlación con la temperatura del aire y (2) con la temperatura media del producto. Se analiza el significado fisicoquímico en ambos casos. Se utilizó una formulación desarrollada para producir geles pécticos de tomate por deshidratación con aire a temperaturas de entre 40 y 80 ºC. Las experiencias se realizaron en un secadero piloto de bandejas con pesada in situ, control de temperatura y de velocidad del aire. La humedad inicial de la formulación fue de 88% p/p, obteniéndose una lámina gelificada final con 35% p/p de textura flexible, adecuada para su consumo en pizzas y sándwiches. El producto se obtiene con una aw de 0,85 y constituye un alimento funcional por la presencia del pigmento rojo licopeno, que exhibe propiedades antioxidantes y anticancerígenas. Además de las curvas de secado, se midieron las historias térmicas del producto con un termómetro infrarrojo sin contacto. Para cada temperatura del aire, la curva de humedad versus tiempo mostró una primera zona húmeda a tiempos cortos, con un comportamiento cuasilineal, interpretado con la solución analítica de la ecuación difusiva considerando resistencias internas y externas a la transferencia de masa, determinando un Biot masa de 0,2. La correlación de la difusividad con la temperatura del aire permitió ajustar una Ea de 19,9 kJ/mol, valor similar al de otros autores. A tiempos largos (zona seca), la etapa fue controlada por la difusión interna de agua, utilizándose una solución analítica acorde para obtener una Ea de 25,4 kJ/mol, mayor que la de la zona húmeda. Esto discreparía con la teoría de Movilidad Molecular (Mm), que predice una mayor dependencia con la temperatura de procesos limitados por la difusión, a mayor contenido de agua. Se volvieron a correlacionar los coeficientes de difusión de la zona húmeda, ahora con la temperatura media del producto y se determinó una Ea de 41,6 kJ/mol, valor muy similar al calor de desorción de agua en alimentos, que es mucho mayor que la Ea de la zona seca, lo que reconciliaría así los resultados con la teoría de Movilidad molecular.
In EnglishThe purposes of this work were to compare the Arrhenius activation energies (Ea) during hot air drying of tomato leathers. This parameter, which represents the dependence of the diffusion coefficient with temperature, was determined by two methods (1) correlation of the diffusion coefficient with air temperature (2) correlation with the mean product temperature. The physical meaning of the results was analyzed for both methods. A previously developed formulation was converted in tomato leather by dehydration at air temperatures between 40 and 80 ºC. The kinetic experiments were carried out in a pilot scale tray dryer with in situ weighing,, and automatic control of air temperature and velocity. Moisture content of the formulation was 88% w/w, and the value for the finished flexible product was 35% p/p, which is suitable for using in pizza and sandwich. The leather has a water activity of 0.85 and constitutes a functional product owing to the presence of lycopene, a carotenoid responsible of the red color of tomato which, besides, possesses antioxidant and anticarcinogenic actions. Besides the drying curves, the product thermal histories were determined by a non contact infrared thermometer. In each experiment carried out at constant air temperature, the curve of average product moisture content as a function of time showed first a "wet zone" where the decrease of moisture was quasilinear. This was interpreted by the analytical solution of diffusion considering internal and external resistances. A mass transfer Biot was determined to be 0.2. When the diffusion coefficient was correlated with air temperature, the activation energy resulted 19.9 kJ/mol, in agreement with previous authors. At long times ("dry zone"), the internal water diffusion controlled the drying rate, so an analytical solution for strict internal control was fitted to the data to obtain the diffusion coefficients. When these, in turn, were correlated with air temperature, the Ea was of 25.4 kJ/mol, higher than in the wet zone but in agreement with earlier work in other dry products. However, these results would not be in agreement with the Molecular Mobility theory (Mm), which predicts a stronger dependence of diffusion-limited processes when the moisture content is higher. In the wet zone, the diffusion coefficients were then correlated with the mean product temperature in that zone, which is more realistic if a constant temperature has to be chosen. The activation energy found was 41.6 kJ/mol, which is very close to the heat of desorption of water in foods and much higher than the activation energy of the dry zone. The latter correlation would reconcile results with the Mm theory and may contribute to a better understanding of drying kinetics in foods.