En español
Las redes sociales han sido utilizadas como medios para la discusión política de los ciudadanos. En este trabajo nos propusimos analizar la influencia que ejerce el discurso en las redes sociales sobre la opinión pública de los candidatos políticos en contextos electorales. Para ello conformamos un dataset con 4.4 millones de tweets políticos durante las elecciones presidenciales estadounidenses entre Trump y Biden del 2020 y analizamos 229 encuestas presidenciales realizadas por 29 encuestadores. Luego, armamos series temporales con los resultados de las encuestas y con la cantidad, tópico del que hablan y sentimiento (positividad / negatividad) de los tweets que mencionan a cada candidato, usando técnicas de procesamiento del lenguaje natural de forma similar a trabajos previos. Aplicando herramientas de inferencia causal en series de tiempo como la causalidad de Granger, Información Mutua Condicional y Base de Funciones Radiales, encontramos resultados estadísticamente significativos de una relación causal. En particular, el sentimiento con el que se habla de los candidato y ciertos tópicos particulares que se debaten en Twitter impactan sobre la intención de voto que finalmente recibe cada candidato presidencial.
En inglés
In recent years, social networks have been the place where citizens exchange their political opinions. In this work, we analyzed the causal influence between the discourse in social networks on the opinion of political candidates in electoral contexts. Therefore, we created a dataset with 4.4 million political tweets during the 2020 US presidential election between Trump and Biden and analyzed 229 presidential polls conducted by 29 different pollsters. Then, we create time series with the poll’s results and with the quantity, topic and sentiment (positive / negative) of the tweets that mentioned the candidates, using natural language processing techniques similarly to previous works. Using time series causal inference tools such as Granger causality, conditional mutual information and radial basis function, we found significant results of causal relationships. In particular, the positivity / negativity of the tweets and some topics discussed on Twitter had a causal impact on each presidential candidate’s polling.