The proton-neutron quasiparticle random phase approximation (pn-QRPA) is extended to include next to leading order terms of the QRPA harmonic expansion. The procedure is tested for the case of a separable Hamiltonian in the SO(5) symmetry representation. The pn-QRPA equation of motion is solved by using a boson expansion technique adapted to the treatment of proton-neutron correlations. The resulting wave functions are used to calculate the matrix elements of double-Fermi transitions.