Un monoide conmutativo reticulado subresiduado (srl-monoide para abreviar) es un par (A, Q) donde A = (A, ∧, ∨, ·, e) es un álgebra de tipo (2,2,2,0) tal que (A, ∧, ∨) es un retículo, (A, ·, e) es un monoide conmutativo, se satisface la ecuación (a ∨ b) · c = (a · c) ∨ (b · c) y Q es una subálgebra de A tal que para cada a, b ∈ A existe el máximo del conjunto {q ∈ Q : a · q ≤ b} el cual es denotado por a → b. En particular, tenemos que Q = {a ∈ A : e → a = a}. Los srl-monoides pueden ser considerados como álgebras (A, ∧, ∨, ·, →, e) de tipo (2, 2, 2, 2, 0). Resulta interesante remarcar que la definición de srl-monoide extiende la definición de retículo subresiduado a pares de álgebras (A, Q) con la propiedad de que si A = Q entonces A es un retículo residuado conmutativo. Más aún, en los retículos residuados conmutativos tenemos que vale la propiedad de residuación (producto-implicación) y en los retículos subresiduados en general solo vale una de las dos implicaciones de la propiedad de residuación (ínfimo-implicación). En este sentido los srl-monoides proveen un marco común para estas dos clases de álgebras.
El objetivo de esta tesis es estudiar la clase de los srl-monoides, la cual es una variedad que contiene propiamente a las variedades de los retículos subresiduados y de los retículos residuados conmutativos.