A Layered Evolution (LE) paradigm based method for the generation of a neuron-controller is developed and verified through simulations and experimentally. It is intended to solve scalability issues in systems with many behavioral modules. Each and every module is a genetically evolved neuro-controller specialized in performing a different task. The main goal is to reach a combination of different basic behavioral elements using different artificial neural-network paradigms concerning mobile robot navigation in an unknown environment. The obtained controller is evaluated over different scenarios in a structured environment, ranging from a detailed simulation model to a real experiment. Finally most important implies are shown through several focuses.