Es un hecho conocido la creciente importancia y el amplio campo de aplicación que las ecuaciones en derivadas parciales tienen en la construcción de modelos matemáticos para la descripción de una gran variedad de problemas provenientes de diversas áreas del saber como, por ejemplo, la economía, la física, la biología.
Muchos procesos de las ciencias aplicadas se pueden modelar matemáticamente por medio de ecuaciones de evolución. Estas ecuaciones, llamadas ecuaciones de estado, describen los fenómenos físicos a estudio.
En las ecuaciones de estado de las teorías matemáticas clásicas intervienen operadores lineales. Sin embargo, algunos de los modelos más complejos utilizados por las distintas ramas de la ciencia involucran ecuaciones diferenciales no lineales. Esto es claro en el caso de la teoría de ecuaciones diferenciales ordinarias y sistemas dinámicos pero en el de las ecuaciones en derivadas parciales no fue siempre así, debido quizás a la ausencia de una teoría general para las mismas.
Un motivo por el cual los sistemas no lineales son más difíciles de analizar matemáticamente es que ´estos presentan una serie de propiedades que no muestran las teorías lineales. Por otra parte, las características esenciales de ciertos fenómenos del mundo real que describen las ecuaciones de estado están relacionadas directamente con las propiedades originadas por el carácter no lineal de dichas ecuaciones.
Los problemas que típicamente se presentan en el estudios de ecuaciones diferenciales son los relativos a existencia de soluciones locales y globales en tiempo, unicidad de las mismas, regularidad y dependencia de las condiciones iniciales, y comportamiento asintótico, para tiempo grande, de las soluciones globales en tiempo. De esto último será de lo que nos ocuparemos a lo largo de esta tesis.