Los sistemas de Aprendizaje Colaborativo Soportado por Computadora (ACSC) permiten el aprendizaje grupal con independencia del tiempo y espacio donde estén localizados los estudiantes y los docentes. Sin embargo, las interacciones que conducen a la creación colaborativa de conocimiento no surgen de manera espontánea y la tecnología puede inhibirlas u obstaculizarlas. Para colaborar efectivamente los estudiantes necesitan principalmente de un etutor (docente) que coordine la interacción grupal. La selección de e-tutores capacitados es clave para el éxito del ACSC pero el análisis manual de las interacciones registradas en estos entornos para conocer el desempeño de los docentes requiere mucho tiempo y esfuerzo. En este artículo se describe un trabajo de investigación que aplica técnicas de minería de textos para crear clasificadores que permitan identificar automáticamente las habilidades manifestadas por e-tutores. Los resultados obtenidos mediante diferentes algoritmos de clasificación son presentados, analizados y comparados.